PROCESSING DATE--230CT70 UNCLASSIFIED ABSTRACT/EXTRACT-BUT THEY ARE EFFECTIVE ONLY IN THE EARLY DAYS OF THE DISEASE, WHEN THEY ARE CAPABLE OF ABORTING IT OR PREVENTING IT FROM CIRC ACCESSION NO--ANO122643 THE DISEASE USUALLY STARTS WITH CHILLS, GENERAL MALAISE, FOLLOWING A SEVERE COURSE. PAINS IN THE SMALL OF THE BACK, ARMS, LEGS, AND BACK, INFLAMMATION OF THE MUCOUS MEMBRANES. A COLD, DRY COUGH. HIS VOICE BECOMES HOARSE AND HE SOMETIMES EXPERIENCES PAIN ON SWALLOWING. HIS EYES BECOME RED AND TEARY. SUCH A PERSON MUST BE PUT TO BED PROMPTLY AND TREATED UNTIL HE THIS WARNING MUST BE GIVEN REPEATEDLY BECAUSE MANY PATIENTS INSTEAD OF GOING TO A THEY SOMETIMES USE DOCTOR THE VERY FIRST DAY TRY TO TREAT THEMSELVES. BARBAROUS MEANS AND IRRITATE THE MUCOUS MEMBRANES (F.G. BY DRINKING VODKA WITH SALT OR ASPIRIN) AND THEY OFTEN TAKE ANTIBIOTICS ANTIBLOTICS ARE NECESSARY ONLY IN CERTAIN CASES, MUSTLY WHEN THERE ARE COMPLICATIONS. IN OTHER (TETRACYCLINE, BIOMYCIN, PENICILLIN, ETC.). CASES THEY ARE FITHER USELESS OR EVEN HARMFUL. ONLY A PHYSICIAN OR FELDSHER SHOULD PRESCRIBE THEM. ATTEMPTS AT USELF TREATMENT", STILL WIDESPREAD AMONG THE POPULATION, MUST BE HALTED AS DANGEROUS TO HEALTH. EVERY PERSON WHO GETS SICK SHOULD SEEK MEDICAL HELP AS SOON AS POSSIBLE AND DO EXACTLY WHAT THE DOCTOR TELLS HIM TO. ORDER OF LENIN INSTITUTE FOR ADVANCED TRAINING OF PHYSICIANS.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

SEPPI, I., Professor Central Order-of-Lenin Institute for Advanced Training USSR

of Physicians

"Influenza, a Treacherous Disease"

Moscow, Sovetskaya Rossiya, 17 Jan 70, p 4

Translation: No infectious disease spreads with such rapidity and complete indifference to geographical, age, or any other kinds of boundaries as influenza. Every year 10-15 percent of people all over the world get the disease and in some years it attacks almost the entire world population.

The influenza virus is exceptionally variable. The defensive forces of the body that are mobilized when a person is infected by one type of virus are helpless against another type. Moreover, lack of susceptibility resulting from the disease disappears fairly quickly, in 1-3 years. That is why outbreaks, epidemics, or pandemics occur after these intervals. During the past 10 years they were caused by the type A₂ or B virus. The epidemic that is now raging in many countries is caused by the A₂ virus.

People sometimes get the impression that mankind is fated to have frequent encounters with influenza epidemics against which it is defenseless, but this

1/6

- 84 -

CIA-RDP86-00513R002202820015-9" **APPROVED FOR RELEASE: 09/01/2001**

impression is false. Due to the progress made by medicine, virology in par-SEPPI, I., Sovetskaya Rossiya, 17 Jan 70, p 4 impression is raise. Due to the progress made by medicine, virology in particular, we have many powerful means of controlling the disease. Their effectiveness we have many powerful means of controlling the disease. fectiveness was manifested in the pardemic of Hong Kong flu in 1968-1969, rectiveness was manifested in the paraemic of nong nong and in 1700-1707, when the incidence of the disease in the USSR was much lower than in some of when the fighty developed countries and deaths were uncommon.

The first means of protection against influenza is healthy work and rest conditions, frequent walks outdoors, physical exercise, attention to personal hygiene and sanitary conditions at home.

Clinical experience shows that the course of influenza is particularly severe in those who abuse alcohol and in those suffering from metabolic, cardiovascular, and respiratory diseases. On the other hand, people who are physically fit, hardy, who have a healthy mode of living either do not conphysically it, margy, who have a healthy mone of living elther tract influenza or have only a mild bout with no complications.

Conditioning of the upper respiratory tract is very beneficial. It is a well-known fact that skiiers and lovers of other kinds of winter sports, "walwell-known late that skillers and lovers of other armub of whiter sports, warruses", rarely have colds. The secret lies not only in their general health

CIA-RDP86-00513R002202820015-9" APPROVED FOR RELEASE: 09/01/2001

and good condition, but in the unusual resistance of the mucous membranes of SEPPI, I., Sovetskaya Rossiya, 17 Jan 70, p 4 and good committee, but in the unusual resistance of the mucous memoranes of their respiratory tract. This resistance can be built up by inhaling fresh their respiratory tract. frosty air, rinsing the mouth and throat with cold water (one should start with warm water and gradually lower the temperature day by day), putting drops of warm and then increasingly cold water into the nose, and cleaning the mouth or warm and then increasingly cold water into the nose, and cleaning the mouth and teeth carefully. On the other hand, abuse of alcohol or overuse of sharp and teeth carefully. On the other hand, integrity of the tissues and lower the find according to the control of the tissues and lower the find according to the control of the tissues and lower the find according to the control of the tissues and lower the control of the tissues and the control of the tissues and lower the control of the tissues and the control of the t food seasonings and smoking destroy the integrity of the tissues and lower the resistance of the mucous membranes of the mouth and respiratory tract.

The second method of controlling influenza is compulsory and early isolation of a victim who is to receive free treatment at home or in a hospital. Unfortunately, people often do not follow this procedure, thinking that suffering with the disease "on their feet" and continuing on the Job even when running a high temperature is a unique kind of "valor". But this is selfish because such a "manly" patient infects others around him and may develop serious comsuch a manny partent interes others around him and may develop serious and other disorders. plications and subsequent nervous, cardiovascular, and other disorders.

Besides the general social and hygienic methods already mentioned, we have some specific and nonspecific means of protection. Among the specific means are influenza vaccine and anti-influenza immunoglobulin. Neither of these agents is capable of completely preventing influenza from spreading,

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

SEPPI, I., Sovetskaya Rossiya, 17 Jan 70, p 4

but they can reduce the incidence of the disease twofold or more and prevent the severe and complicated forms. These agents should therefore be used primarily among the most threatened groups -- children, workers in retail shops, transport, hospitals and clinics, etc.

One of the great medical accomplishments of recent years is the development of nonspecific means of protection against viral diseases, influenza in particular. These means are new, but they have already demonstrated their value. One of them is interferon, a protein that prevents virus from multiplying in human cells. Interferon can be produced artificially and then introduced into the respiratory tract (e.g., by instilling drops into the nose). Interferon elaborated by the body itself after the introduction of special stimulants is even more active.

Trials of interferon conducted by the laboratories of Academicians 2. V. Yermol'yeva and V. D. Solov'yev and by Academician O. V. Baroyans' department in the Central Institute of Advanced Training of Physicians showed it to be highly effective against influenza.

It should be noted that all these specific and nonspecific agents are used both to prevent and to treat influenza. But they are effective only in

SEPPI, I., Sovetskaya Rossiya, 17 Jan 70, p 4

the early days of the disease, when they are capable of aborting it or preventing it from following a severe course.

The symptoms of influenza are easily recognized. The disease usually starts with chills, general malaise, headache and sometimes high temperature. The patient has aches and pains in the small of the back, arms, legs, and back, inflammation of the mucous membranes, a cold, dry cough. His voice becomes hoarse and he sometimes experiences pain on swallowing. His eyes become red and teary. Such a person must be put to bed promptly and treated until he completely recovers.

Influenza mustn't be trifled with. This warning must be given repeatedly because many patients instead of going to a doctor the very first day try to treat themselves. They sometimes use barbarous means and irritate the mucous membranes (e.g. by drinking vodka with salt or aspirin) and they often take antibiotics (tetracycline, biomycin, penicillin, etc.). Antibiotics are necessary only in certain cases, mostly when there are complications. In other cases they are either useless or even harmful. Only a physician or feldsher should prescribe them. Attempts at "self-treatment", still widespread among the population, must be halted as dangerous to health.

- 86 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

SEPPI, I., Sovetskaya Rossiya, 17 Jan 70, p 4

Every person who gets sick should seek medical help as soon as possible and do exactly what the doctor tells him to.

6/6

SEPPI, I. V., Professor, and GAVRILIMA, V. V., Engineer-technologist, Institute of Nutrition, Academy of Medical Sciences USSR

"Botulism"

Moscow, Zdorov'ye, No 8, Aug 72, pp 16-17

Abstract: in this popularized article Professor Seppi characterizes botulism and its insidiousness. He points out that under present Soviet conditions botulism is most often caused by improperly prepared homemade foods, chiefly mushrooms. As an example he quotes a case where a person had consumed only a small piece of sausage given to her on a fork that was previously used in eating mushrooms which were the cause of severe poisoning of several persons by botulinus toxin. He notes that the power of this toxin surpasses all other bacterial toxins and chemical poisons. One gram of it is sufficient to poison one hundred million persons. Although such quantities do not accumulate in foodstuffs, even the slightest amount of it presents a great danger.

Statistical data show that in every second person affected by botulism, the poisoning was caused by howemade muchroom preserves, in every fifth case homemade salt or smoked fish was responsible, and in every sixth case homemade for other cases. Homemade fruit or park preserves accounted 1/2

HETERICAL PROPERTY OF THE PROPERTY OF THE PARTY OF THE PA

ASSESSED TO THE REPORT OF THE PROPERTY OF THE

USSR

SEPPI, I. V. and GAVRILINA, V. V., Zdorov'ye, No 8, Aug 72, pp 16-17

Its insidiousness consists in the fact that botulinus toxin, with rare exceptions, does not change either appearance, or taste, or odor of foods. Moreover, the vomiting and intestinal disorders which usually accompany poisonings are rarely present in botulism; body temperature is almost normal, and to such symptoms as dryness of the mouth, hoarseness, clouding of vision, especially when combined with ingestion of alcohol, often no importance is attached in the beginning.

V. V. Gavrilina gives detailed recommendations on how to prepare homemade preserves, in order to avoid botulism. Her recipes include: preserved stewed fruits (compotes), pickled cucumbers and tomatoes, selt mushrooms, salt fish,

and dried fish.

5/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

UNCLASSIFIED

PROCESSING DATE--230CT70

TITLE--CERTAIN CHARACTERISTICS OF THE F1 LAYER -U-

AUTHOR--SERAFIMOV. K.B.

COUNTRY OF INFO--USSR

1/2 023

SOURCE-IN: IONOSPHERIC STUDIES. NUMBER 19 (IONOSFERNYE ISSLEDOVANITA.

NUMBER 19). (A70-32076 15-13), MOSCOW, IZDATEL'STVO NAUKA, 1970, P. DATE PUBLISHED---- 70

SUBJECT AREAS--ATMOSPHERIC SCIENCES

TOPIC TAGS--F LAYER, DXYGEN, ATOM, SOLAR ACTIVITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1071

STEP NO--UR/0000/70/000/000/0124/0135

CIRC ACCESSION NO--ATO124728

UNCLASSIFIED

CIRC ACCESSION NO-ATO124728

CIRC ACCESSION NO-ATO124728

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. DISCUSSION OF THE FORMATION OF THE F1 LAYER AS THE RESULT OF THE STRATIFICATION OF THE F LAYER.

EXPRESSIONS ARE GIVEN TO DETERMINE THE CONDITIONS FOR THE FORMATION OF A EXPRESSIONS ARE GIVEN TO DETERMINE THE CONDITIONS FOR THE FORMATION OF A HELL LEVELED F1 LAYER. A POSSIBLE LINK BEIWEEN THE OCCURRENCE OF THIS LAYER AND THE VARIATIONS IN THE CONCENTRATION OF ATOMIC DAYER AND IN THE ZENTIH ANGLE IS INDICATED. THE DYNAMIC BEHAVIOR OF ION PRODUCTION MAXIMA AND THE EFFECTS OF THE LINEAR AND QUADRATIC LAWS OF RECOMBINATION ARE ALSO CONSIDERED AS POSSIBLE FACTORS IN THE FORMATION OF THIS LAYER. EXPERIMENTAL DATA ARE GIVEN CONCENSING THE TIME OF APPEARANCE AND DISAPPEARANCE OF THE F1 LAYER. ION PRODUCTION RATES IN THIS LAYER ARE ESTIMATED FROM OBSERVATIONS DURING HIGH AND LOW SOLAR ACTIVITY PERIODS.

UNCLASSIFIED

1/2 021

UNCLASSIFIED

PROCESSING DATE--230CT70

TITLE--CERTAIN POSSIBILITIES OF A MORE ACCURATE DETERMINATION OF THE STRUCTURE OF THE IONOSPHERE -U-

AUTHOR--SERAFIMOV, K.B.

COUNTRY OF INFO--USSR

SOURCE-IN: IONOSPHERIC STUDIES. NUMBER 19 (IONOSFERNYE ISSLEDOVANIIA. NUMBER 19). (A70-32076 15-13), MOSCOW, IZDATEL'STVO NAUKA, 1970, P.

DATE PUBLISHED----70

SUBJECT AREAS--ATMOSPHERIC SCIENCES

TOPIC TAGS--IONOSPHERE, SOLAR RADIATION ABSORPTION, STRUCTURAL ANALYSIS, RADIOPHYSICAL METHOD

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1070

STEP NU--UR/0000/70/000/000/0114/0123

CIRC ACCESSION NO--ATO124727

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

TRECHE PERSONAL PERSO

PROCESSING DATE--230CT70 UNCLASSIFIED 021 CIRC ACCESSION NO--ATO124727 ABSTRACT. DESCRIPTION OF A REVISEO PROCEDURE ABSTRACT/EXTRACT--(U) GP-0-FOR STUDYING THE STRUCTURAL CHARACTERISTICS OF THE IONOSPHERE BY RADIOPHYSICAL METHODS. THE PROCEDUPE CALLS FOR ADDITIONAL RADIATION ABSORPTION MEASUREMENTS AND IS DESIGNED TO IMPROVE THE RESULTS OSTAINED BY CONVENTIONAL RADIO PHYSICAL OBSERVATIONS. THE POSSIBILITY OF USING NONDEFLECTING ABSORPTION FOR DETERMINING THE N(Z) PROFILE IN THE D AND INTERMEDIATE D-E REGIONS IS ANALYZED. ALSO EVALUATED IS THE USE OF DEFLECTING ABSORPTION FOR OBTAINING INDEPENDENT CONTROL DATA FOR THE NIZE DISTRIBUTION IN THE MIDDLE AND HIGHER IONOSPHERE. PROCEDURES FOR SEPARATION OF DEFLECTING AND NONDEFLECTING ABSORPTIONS AND FOR THE DETERMINATION OF THE STRUCTURE OF THE E-F2 REGION ARE ALSO DESCRIBED.

CIA-RDP86-00513R002202820015-9"

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001

Personal des de la companya del la companya de la companya del la companya de la companya del la companya de la companya de la companya del la companya de la companya de la companya del la companya

T/2 027 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--AFTERNOON AND EVENING MAXIMA IN THE F2 LAYER +U-

AUTHOR-(02)-SERAFINOV, K.B., GORINOV, N.

COUNTRY OF INFO--USSR

SOURCE-IN: IONOSPHERIC STUDIES. NUMBER 19 (IONOSFERNYE ISSLEDOVANIIA. NUMBER 19(. (A70-32076 15-13), MOSCOW, IZDATEL'STVO NAUKA, 1970, P. DATE PUBLISHED----70

SUBJECT AREAS -- ATMOSPHERIC SCIENCES, ASTRONOMY, ASTROPHYSICS

TOPIC TAGS--F LAYER, IONIZATION, SOLAR ACTIVITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1069

STEP NO--UR/0000/70/000/000/0109/0113

CIRC ACCESSION NO--ATO124726

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

2/2 027 UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--ATO124726 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. STUDY OF THE DEPENDENCE OF THE PARAMETERS OF THE AFTERNOON AND EVENING TONIZATION MAXIMA IN THE F2 LAYER ON THE SEASON, ZENITH ANGLE, AND SOLAR ACTIVITY LEVEL. IT IS SHOWN THAT THESE MAXIMA INCREASE DURING A SOLAR ACTIVITY MINIMUM WHILE THE TIME OF THEIR OCCURRENCE IS NOT SUBSTANTIALLY AFFECTED BY VARIATIONS UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

1/2 028 UNCLASSIFIED TITLE--INVESTIGATION OF IGNIZATION NEUTRALIZATION PROCESSES IN THE MIDDLE PROCESSING DATE--230CT70 IONOSPHERE BY RADIOPHYSICAL MEASUREMENTS -U-

AUTHOR--SERAFINDY, K.B.

COUNTRY OF INFO--USSR

SOURCE--IN: IONOSPHERIC STUDIES. NUMBER 19 (IONOSFERNYE ISSLEDOVANIIA. NUMBER 191. (A70-32076 15-13), MOSCOW, TZDATEL'STVO NAUKA, 1970, P. DATE PUBLISHED ----- 70

SUBJECT AREAS -- ATMOSPHERIC SCIENCES

TOPIC TAGS--IONIZATION, ION NEUTRALIZATION, ION RECOMBINATION, E LAYER, RADIOPHYSICAL METHOD

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1068

STEP NO--UR/0000/70/000/000/0099/0108

CIRC ACCESSION NO--ATO124725

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

PROCESSING DATE--230CT70 2/2 028 CIRC ACCESSION NO--AT0124725 ABSTRACT. DISCUSSION OF TECHNIQUES FOR ABSTRACT/EXTRACT--(U) GP-0-STUDYING RECOMBINATION AND NEUTRALIZATION PROCESSES IN THE F AND E REGIONS OF THE IONOSPHERE. A METHOD FOR DETERMINING THE EFFECTIVE RECOMBINATION COEFFICIENT IN THE E REGION BY RADIOPHYSICAL MEASUREMENTS IS DESCRIBED. VALUES OF THE COEFFICIENT OBTAINED BY RADIOPHYSICAL OBSERVATIONS AT VARIOUS POSITIONS OF THE SUN ARE FOUND TO VARY FROM LESS THAN 10 TO THE MINUS 8 CU CM PER SEC TO MORE THAN 10 TO THE MINUS 7 CU CH PER SEC DURING THE DAY, WITH VALUES OF ABOUT 10 TO THE MINUS 7 CU CM PER SEC PREVAILING. THE CAUSES OF THESE VARIATIONS ARE DISCUSSED. UNCLASSIFIED

"APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002202820015-9

Acc. Nr: AP0046351

Ref. Code: UR 0000

PRIMARY SOURCE: Razdel V, Ionosfernyye Issledovaniya, 1970,

Nr 19, pp/14-123

K. B. Serafimov. Some possibilities of more accurate determination of struc-

It is proposed to use additional measurement absorbtion for elemination of main shortcomings in modern methods of determination of ionosphere structure with the help of radio physical measurements. Possibility to use nondiverting absorbtion is analized for determination N (z) of profile in region D and intermediate D— E region and application of diverting absorbtion to get control independent data on distribution of H(z) in the middle and higher ionosphere. Some methods of division of total absorbtion are discribed into diverting and non-diverting and determination of structure of intermediate E—F2 region. Some examples of application of these methods are given.

″/

REEL/FRAME 19781516 -helf

12

Acc. Nr: APOO46352

Ref. Code:UROCO

PRIMARY SOURCE: Razdel V, Ionosfernyye Issledovaniya, 1970,
Nr 19, pp/09-1/3

K. B. Serafimox, N. Gorinov About afternoon and evening maximum
As is known an afternoon increase of ionization is a specific element of around the clock motion of F2.

It is shown that specific parameters of afternoon and evening maximum depend ty the value of this maximum is the greatest and changes of solar activity. So with maximum activice greatly upon a moment of appearance of this maximum.

REEL/FRAME 19781517

12

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

"APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002202820015-9

Acc. Nr: 470046367

Ref. Code: UROSCO

PRIMARY SOURCE: Razdel V, Ionosfernyye Issledovaniya, 1970,

Nr 19, pp/24-/35

K. B. Serafimov. Some regularities of layer F1.

Conditions of stratification of region F of ionosphero are discussed leading to appearance of layer F1. Analytical expression is given for conditions of appearance of well distinguished layer F1. It can be connected with some change of concentration of atomic oxygen making a main contribution into the rate of ionization and zenith angle of the sun. Another explanation of appearance can be connected with coincidence or non-coincidence of levels where is a maximum rate of ionoformation and where effects of linear and quadratic laws of recombination are compared. Some experimental data are described about moments of appearance and disappearence of layer F1 and also some peculiarities of behaviour of F1. On the basis of experimental data some estimations of rate of ionoformation are made in the region of F1 under high and poor activity of the sun.

4/

REEL/FRAME 19781532

es \$1874.

.

12

Ref. Code: URCOOO

PRIMARY SOURCE:

Razdel V, Iohogiernyye Issledovaniya, 1970, Nr 19, pp 99-108

Serafimov. About investigations of ionization - neutralization processes in the middle lonosphere by the way of radio-physical measurements .

A question of determination of main parameters of ionization — recombination cycle of processes in regions E and F1 of ionosphere is discussed. A method of determination of in region E is described. Some results of determination of a region are given on the basis of gadiophysical observations, carried out in different angles of the sun. It is shown that during twenty four hours an effective coefficient of recombination is essentially changed from $\alpha_E' < 10^{-3} \text{ cm}^3 \text{sec}^{-1}$ to $\alpha_E > 10^{-7} \text{ cm}^3 \text{ sec}^{-1}$. However in the prevailing part of a day $\alpha_E' \approx 10^{-7} \text{ cm}^3 \text{ sec}^{-1}$. The indicated changes α_E' can not probably be explained by variations of atmosphere temperature only, an essential role should also be played by some change of ionic composition around the clock.

For region F1 some curves of change with height of maximum and minimum values

of effective coefficient of recombination are drawn up limiting actual value art. Possi bilities of investigations of a' in the lower part of ionosphere (region D) is shortly dis-

19781518

1/2 011 TITLE--PHASE EQUILIBRIUM IN A VINYL ACETATE ACETIC ACID WATER SYSTEM AT UNCLASSIFIED PROCESSING DATE--04DECTO

AUTHOR-(04)-TIKHONOVA, N.K., TIMOFEYEV, V.S., SERAFIHOV, L.A., TOLKACHEVA,

COUNTRY OF INFO--USSR

SOURCE--IZV. VYSSH. UCHEB. ZAVED., KHIM. KHIM. TEKHNOL. 1970, 13(2), 175-7

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--PHASE EQUILIBRIUM, VINYL COMPOUND, ACETATE, ACETIC ACID

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0791

STEP NO--UR/0153/70/013/002/0175/0177

CIRC ACCESSION NO--ATOL32889

UNCLASSIFIED

2/2 011 UNCLASSIFIED PROCESSING DATE--04DECTO
CIRC ACCESSION NO--AT0132889
ABSTRACT-EQUIL. COMPNS. IN THE 2 LIQ. PHASE
REGION AND ALONG THE BINDDAL SOLY. CURVE FOR THE TERNARY SYSTEM VINYL
ACETATE HOAC-H SUB2 O ARE GIVEN FOR 13 POINTS AT 20DEGREES, AND FOR 11
POINTS AT THE B.P., AND A TERNARY ISOTHERMAL ISOBARIC DIAGRAM IS
PRESENTED. VAPOR LIQ. EQUIL. AND B.PS. ARE ALSO GIVEN FOR 27 TERNARY
MIXTS. AT ATM. PRESSURE. THE SYSTEM IS DEFINED AS TYPE 4ALPHA CLASS I
TRIANGLE IS SEPD. INTO 2 RECTIFICATION METHOD OF GURIKOVA, AND THE CONCN.
INST. TONKOI KHIM. TEXHNOL. IM. LOMONDSOVA, MOSCOW, USSR.

UNCLASSIFIED

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

1/2 013 TITLE--USE OF CHROMATOGRAPHIC APPARATUS TO STUDY THE STRUCTURE OF LIQUID PROCESSING DATE--020CT70 AUTHOR-(03)-KIVA, V.N., PARIYCHUK, L.V., SERAFIMOV, L.A.

COUNTRY OF INFO--USSR

SOURCE--ZH. FIZ. KHIM. 1970, 44(1), 225-7

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--PHASE EQUILIBRIUM, PHASE DIAGRAM, ORGANIC SOLVENT, GAS CHRUMATOGRAPHY, AZEOTROPIC MIXTURE

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0805

STEP NO--UR/0076/7D/044/001/0225/0227

CIRC ACCESSIUN NO--APO107347

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

UNCLASSIFIED

PROCESSING DATE——02DC170

CIRC ACCESSION NO—APO107347

ABSTRACT/EXTRACT——(U) GP-0— ABSTRACT. THE GAS CHROMATOGRAPHIC SEPN. IS

SUB2 CO. CCL SUB4, CHCL SUB3, HEXANE, ETC.) BY EVAPN. OF A SAMPLE INTO

PACKING WITHOUT A STATIONARY PHASE. THE POSSIBILITY OF USING THE

IS SHOWN.

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

PROCESSING DATE——02DC170

PROCESSING DATE——02DC170

PROCESSING DATE——02DC170

PROCESSING DATE——02DC170

PROCESSING DATE——02DC170

ABSTRACT/EXTRACT/E

UDC 528.021.6

SERAPINAS, B. B., Candidate of Technical Sciences, Moscow Institute of Engineers of Geodesy, Aerial Photography and Cartography

"Effect of Navigation Errors on the Accuracy of Measuring Long Lines by the Range Intersection Method"

Moscow, Izvestiya Vysshikh uchebnykh zavedeniy, Geodeziya i aerofotos'yemka,

Abstract: The relationship between navigation errors and errors of individual sums and errors of minimal sums in the Shoran method of measuring long lines is derived. It is noted that at the present time the accuracy of measurements made by such systems due to the effect of many sources of error in the intersection system is of the order of the relative error of measurement equal to 1.10 5 or even sometimes as high as 3.10 5; navigation errors are ordinarily not considered but since these errors are independent of the accuracy of the radiogeodesic equipment and are determined only by the state of the atmosphere, the type of aircraft and the perfection of the navigation, the question arises as to how the aircraft should go along a line intersecting the range and how

. 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

A THE CONTRACTOR OF THE STATE O

TICCD

SERAPINAS, B. B., Izvestiya Vysshikh uchebnykh zavedeniy, Geodeziya i aerofotos'yemka, No. 3, 1970, pp 9-16

one should strictly maintain constant ground speed and time intervals over which the sums of distances measured by modern equipment are fixed. It is shown that the effective navigation errors on the minimum sums is considerably less in comparison with the effect on individual sums. The effect of navigation errors drops sharply with a decrease in the height of flight and an increase in the lengths of the lines. Errors in altitude have the greatest effect of all navigation errors. It is emphasized that particular attention in crossings of the range should be paid to maintaining a constant flight altitude. This is especially important in measurements of the order of 100 kilometers or less and at altitudes of >2 km. In this case the range should be intersected no less than 4-9 times to reduce navigation errors to 1/300,000. In flights along the range semetimes made to check equipment, it is assumed that the sum of the distances remains fixed. This occurs only close to the middle of the line and altitude fluctuations of the aircraft may distort the measured sum of the distances by several meters.

2/2

446-

USSR

UDC 528.517

SERAPINAS, B. V.; Moscow Institute of Geodetic Engineers, Aerial Photography and Cartography

"Certain Triangulation Schemes and the Accuracy of Geodetic Constructions with Help of Tellurometers Having Dispersed Transceivers"

Moscow, Izvestiva Vysshikh Uchebnykh Zavedeniy, Geod. i Aerofotos yemka, No h, 72, pp 49-54

Abstract: The use of tellurometers with dispersed transceivers makes possible reduction in the expense of building survey markers, which, in fact can be eliminated entirely with use of the "Luch" tellurometer in flat and thinly wooded areas.

The present study concerns the possibility of constructing geodetic networks based on rhomboidal links. It is assumed that in every link a tellurometer of this type is used to measure all sides and one diagonal, and a theodolite to measure the two angles opposite this diagonal and the angle between adjacent links. Markers are set up only at points of angle measurement; masts, with signals and transceivers at other points. The estimate of the accuracy of such networks is even superior to that of triangulation in some situations. An economy of more than 20 percent is realized by the reduction in the number of markers. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

anga pagaspag pangga kabisni anahasi an anahasi at anaha. Ala canta ak ipa

TITLE--ON SEGMENTS OF THE HUMAN LIVER AND SURGICAL ACCESSES TO THEM -U-

UNCLASSIFIED

PROCESSING DATE--230CT70

AUTHOR--SERAPINAS. I.L.

COUNTRY OF INFO--USSR

1/2 017

SOURCE-VESTNIK KHIRURGII IMENI I. I. GREKOVA, 1970, VOL 104, NR 4, PP

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--LIVER, SURGERY, ANATOMY, AUTOPSY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/0028

STEP NO--UR/0589/70/104/004/0048/0055

CIRC ACCESSION NO--APOLO5127

UNCLASSIFIED

CIA-RDP86-00513R002202820015-9" APPROVED FOR RELEASE: 09/01/2001

UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--APO105127

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. BASED ON THE STUDY OF 431

POSTMORTEM PREPARATIONS OF EXTRA AND INTRAORGANIC BLOOD VESSELS AND BILIARY PASSAGES OF THE LIVER OF HUMANS AT THE AGE FROM A 3 MONTH OLD FOETUS TO 96 YEARS OLD PERSONS A NEW CLASSIFICATION OF HEPATIC SEGMENTS IS GIVEN. AS WELL AS MOST RATIONAL SURGICAL APPROACHES TO THEM. THORACOABDOMINAL INCISIONS ARE FELT TO BE RATIONAL FOR ACCESS TO THE INFERIOR VENA CAVA ABOVE THE DIAPHRAGM, TO HEPATIC VEINS OSTIA, AS WELL AS TO THE MEDIAN AND RIGHT SETORS OF THE LIVER AND THEIR SEGMENTS.

UNCLASSIFIED

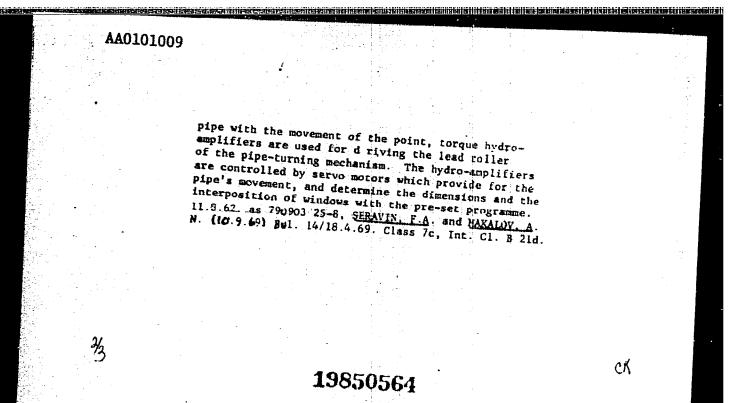
APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

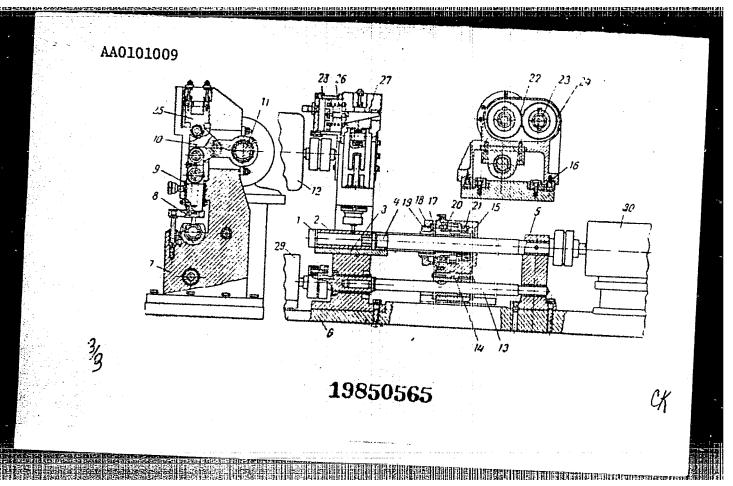
Acc. Nr. 0101009

Abstracting Service:

UR 0482

Ref. Code:

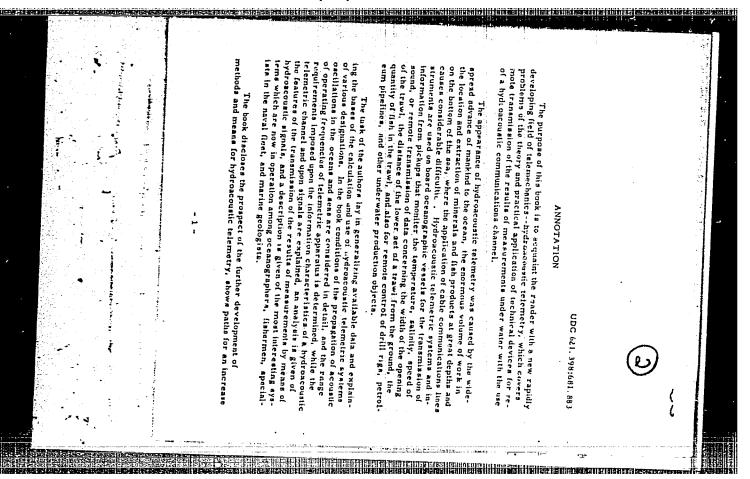

Soviet Inventions Illustrated, Section III Mechanical and General,

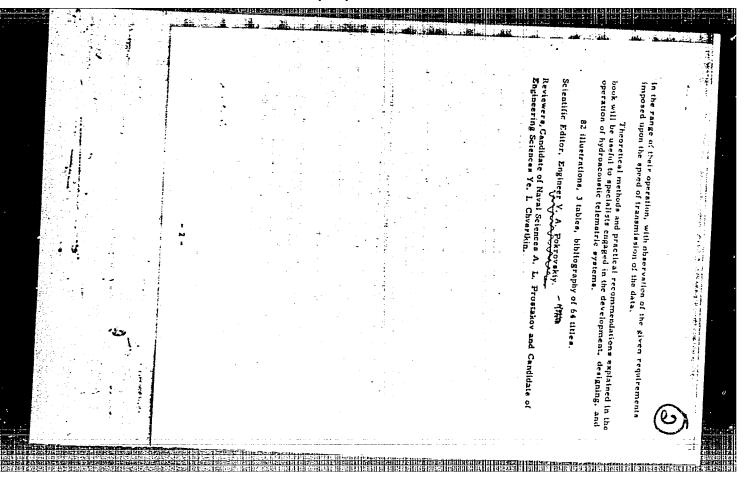

Derwent,

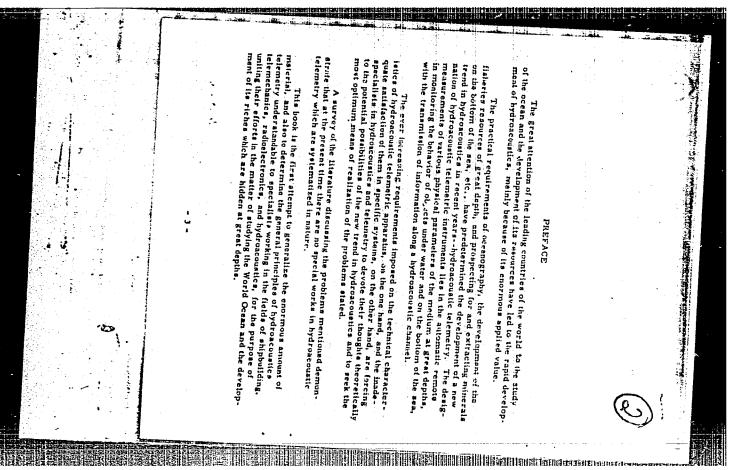
241382 FORMING APERTURES IN THIN-WALLED PIPES uses a device with a point (8) which is fixed on the press's slide block (9), a matrix (2) a mechanism for longitudinal movement of the pipe, a mechanism for turning the pipe in relation to the matrix, and a programming device which provides for the pre-set movements of the pipe. In order to enable automation of the process of piercing and to increase the precision of tooled details, the point's crosssection corresponds to the dimensions of the smallest window and enables a consecutive formation of a contour of a window of a pre-set configuration The mechanism for the longitudinal movement of the pipe, which is synchronised with the point's movement, is a carriage (15) with a pipe-clamping mechanism (17) The carriage is moved by the lead screw (13) and has ball guides (16). The mechanism for turning the pipe round its axis is made in the form of a lead roller (23) which is kinematically connected with the clamping mechanism.

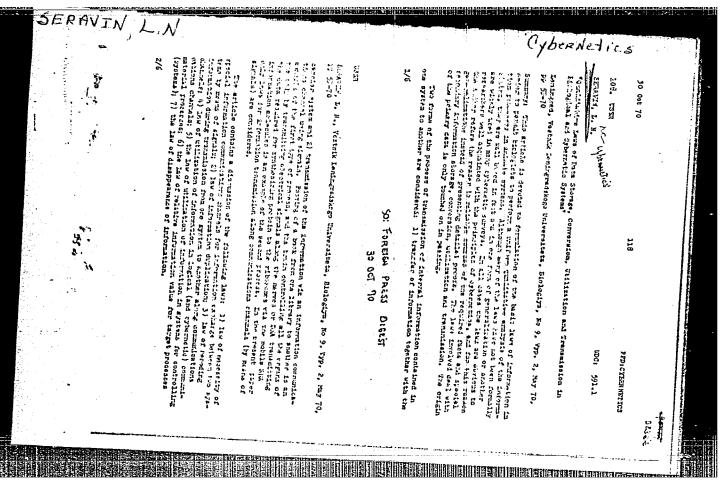
In order to synchronise the movement of the

REEL/FRAME 19850563 18 CK




APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"


"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9


|--|

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9

USSR

UDC 535.215.12+621.382.28

LITOVCHENKO, V. G., SERBA, A. A., GORBAN', D. N., MOSKAL', D. N., IVANOVA, T. P.,

"Use of an Optoelectronic Converter based on a Metal-Dielectric-Semiconductor Photovaricap in a Dosimetric Device"

Kiev, Poluprovodnikovaya tekhnika i mikroelektronika, No 5, 1971, pp 108-113

Abstract: A study was made of the basic characteristics of a new type of semiconductor voltage modulator using a surface metal-dielectric-semiconductor photovaricap as the active element. The theoretical analysis of the physical phenomena determining the operation of the MDS photovaricaps and also some experimental results of studying their characteristics were presented previously [V. G. Litovchenko, et al., Elektronnaya tekhnika, Series 2, No 1, 96, 1967;

V. G. Litovchenko, et al., Radiotekhnika i elektronika, Vol 12, No 1, 76, 1967]. An optoelectronic modulator of constant and low-frequency voltages from high-resistance sources was developed on the basis of an MDS photovaricap and a light diode. The modulator is characterized by high-frequency parameters (105-107 hertz), high input impedance (> 1012 ohns), small size and weight. Experimental data were obtained which illustrate the operation of the MDS photovaricap in the optoelectronic modulator, in particular, combined with the

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

LITOVCHENKO, V. G., et al., <u>Poluprovodníkovaya tekhnika i míkroelektronika</u>, No 5, 1971, pp 108-113

ionization chamber. The application of these optoelectronic modulators permits an increase in their modulation frequency by several orders (by comparison with mechanical dynamic capacitors) and, therefore, use of ordinary alternating voltage amplifiers instead of electrometric input cascades.

2/2

- 12 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

535.215.12+621.382.28 UDC

LITOVCHENKO, V. G., SERBA, A., GORBAN', D. N., MOSKAL', D. N., IVANOVA, T. P., TKACHIK, V. P, and PROKUROV, A. V.

"Using Optical-Electronic Converters Using MOS Photovaricaps in Dosimetric Equipment"

Kiev, Poluprovodnikovaya tekhnika i mikroelektronika, No. 5, 1971,

Abstract: An investigation is made of the basic characteristics of a new type of semiconductor voltage modulator used as the active element in a surface metal oxide semiconductor photovaricap. This paper is thus a secuel to two earlier articles (Elektronnaya tel-hnika, Series 2, 1967, 1, 96, and Radiotekhnika i elektronika, 1967, 12, 1, 76) written by the same authors, which dealt with the theoretical analysis of the physical phenomena determining the operation of MOS varicaps of the optical variety, and the experimental results of research into their characteristics. The experiments described in the present paper were conducted with p-type silicon specimens of various resistivities, from 102 to 104 chm.cm, the surfaces of which were cleaned and sputtered with a layer of SiO2 A block diagram of the measuring equipment is shown and its operation described. The authors conclude that these photovaricans can

USSR

LITOVCHENKO, V. G., et al., <u>Poluprovodnikovava tekhnika i mikro-elektronika</u>, No. 5, 1971, pp 108-113

be successfully used in equipment for measuring small constant or slowly varying currents and voltages from high-resistance sources. They are associated with the Semiconductor Institute, Ukrainian

2/2

- 31 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

UDC 621.383.5+621.382.28+535.215.12

LITOVCHENKO, V. G., SERBA, A. A., GORBAN', A. P.

"Some Physical Processes in the Metal-Dielectric-Semiconductor System under Conditions of Strong Nonstationary Depletion of the Semiconductor"

Kiev, Poluprovodnikovaya tekhnika i mikroelektronika, No 5, 1971, pp 11-18

Abstract: A method is proposed for a combined study of the capacitance and conductivity of a metal-dielectric-semiconductor structure converted to the nonstationary depletion condition by means of a rectangular-pulse voltage. The system was studied under two conditions: in the absence of intensification (the thermodynamically equilibrium situation in a neutral space) and with intensification (thermodynamically known equilibrium situation in neutral space).

In the thermodynamically equilibrium situation, measurement of the capacitance and longitudinal conductivity permits determination of the concentration of the equilibrium carriers (without distorting the effect of the mobility, the Hall constant, and so on) and the mobility of the majority carriers (including the distribution of the mean mobility with respect to thickness of the specimen). In the thermodynamically nonequilibrium situation, the investigated system has high collector properties for nonequilibrium electron-hole pairs; it permits obtaining of a "gigantic" photocapacitive 1/2

USSR

LITOVCHENKO, V. G., et al., Poluprovodníkovaya tekhnika i mikroelektronika, No 5, 1971, pp 11-18

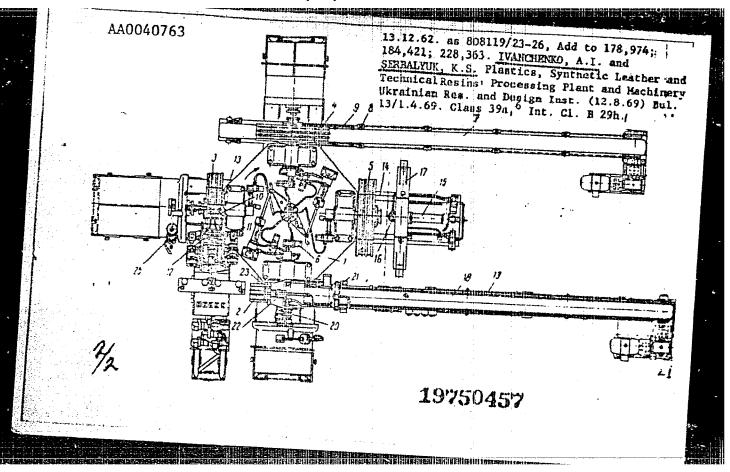
effect (k = $^{\circ}$ / $^{\circ}$ eff $^{\circ}$ $^{\circ}$ 10 4 -10 5) and determination of the photogeneration function of the electron-hole pairs in the semiconductor in absolute units. Extraordinarily small light fluxes can be recorded here ($^{\circ}$ 10 $^{-12}$ watts/cm 2). Experimental results are presented which confirm the theoretical analysis.

2/2

- 97 -

AA 0040763

SERBALYUK


UR 0482

Soviet Inventions Illustrated, Section I Chemical, Derwent,

AUTOMATIC ASSEMBLY LINE for the namufacture of sets of removable protecting ring comprises a four-position carousel type stand with standards which interact with the based transporter going round the stand. There are also sechanisms for cutting the band, guide and pressing rollers and a photoelectric detector sending signals to line control arrangements. The line is also provided with cord laying and cutting devices, individual ring manipulators and vulcanising arrangements.

Ukrainskiy Nauchno - Issledovatel'skiy i Konstruktorskiy
Institut po Razrabotke Mashin i Oborudovaniya diya Pererabotki
Plastmass, Iskusstvennoy Kozhi i Tekhnicheskoy Reziny

19750456

Infrared Rays

USSR

UDC: 621.382.2

GREKHOV, I. V., LEVINSHTEYN, M. Ye., L'VOVA, T. V., OTBLESK, A. Ye. and SERBIN, A. I., A. F. Ioffe Physico-Technical Institute, Leningrad

"Silicon Injection Modulator of Infrared Radiation"

Leningrad, Fizika i tekhnika poluprovodnikov, No 7, 1972, pp 1327-1334

Abstract: This paper describes experiments for investigating silicon injection modulators and discusses methods for computing injection modulators operating in the pulse mode. The experimental equipment uses a CO2 laser of the OKG-15 type, with a wavelength of 10.6 μ , the beam incident on the face of the silicon specimen. The transmitted beam falls on a photosensitive device, and the signal from the latter is applied to a microvoltmeter of the V6-2 type, in the d-c mode, or to a pulse amplifier and thence to an oscillograph, in the pulse mode. Rectangular pulses are applied to the specimen. A block diagram of the apparatus and an explanation of the experimental procedures are given. Curves are plotted for the modulation coefficient as a function of the d-c current density in different types of specimens under various conditions, 1/2

USSR

UDC: 621.382.2

GREKHOV, I. V., et al, Fizika i tekhnika poluprovodnikov, No 7, 1972, pp 1327-1334

the coefficient being calculated from the formula $K=(I_0-I_J)/I_0$, where I_0 is the signal recorded by the microvoltmeter with no current, and I_J is the signal for a specified current density. It is found that the rate of growth of the coefficient with time is not determined by the reactances in the circuit but by the modulation of the resistance in the diode specimen base through the injected carriers. In the theory section of this paper, the results of the experiments are discussed on the basis of a model according to which the current through the diode remains constant during the time of the pulse.

2/2

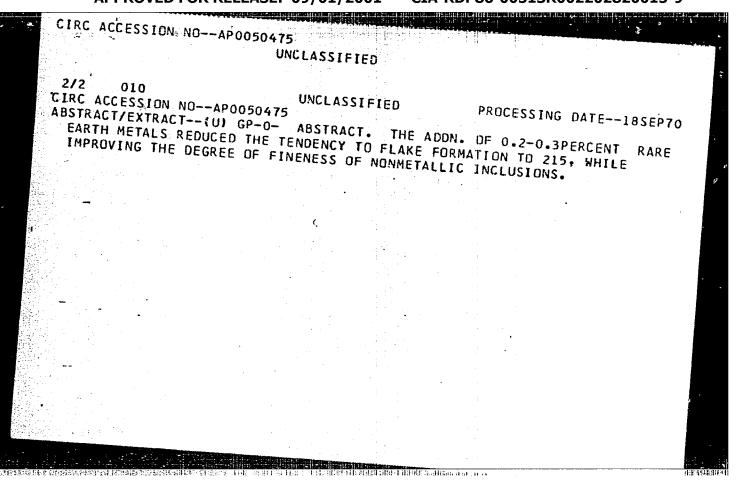
- 22 -

1/2 010 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--EFFECT OF RARE EARTH METALS ON THE FLAKE SENSITIVITY OF ALLOY STEEL

AUTHOR-(05)-SERBIN, A.P., SKLYUYEV, P.V., SOKOLOV, V.YE., ROMANOV, A.A., COUNTRY OF INFO-USSR

SOURCE--IZV. AKAD. NAUK SSSR, METAL. 1970, (1), 245

DATE PUBLISHED----70


SUBJECT AREAS -- MATERIALS

TOPIC TAGS--RARE EARTH METAL, NONMETALLIC INCLUSION, STEEL FLAKE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1981/0458

STEP NO--UR/0370/70/000/001/0245/0245

USSR

MEDYANIK, A. N. and SERBIN J. A.

UDC: 532.132

"Device for Investigating the Second Sound in Rotating Superfluid Solutions of 3He-4He"

Trudy, Fiziko-tekhnicheskiy institut nizkikh temperatur (Physico-technical Institute for Low Temperatures-collection of works)

Academy of Sciences, Ukrainian SSR, No. 10, 1970, pp 183-191

(from RZh-Fizika, No. 9, 1971, Abstract No. 9E37)

Translation: A device is described for investigating the second sound in rotating superfluid solutions of The-He at temperatures above 1.40 K and at rotational velocities of 0.5-240 rpm with a rotational nonuniformity of 0.3-0.5%. The device differs from that described in the literature in that the excitation and detection of the second sound are realized by the contactless method with the help of a system of connected tuned circuits; the construction of the device takes into account the peculiarities of system which permits measuring the velocity and added absorption of the second sound in the rotation. Author's abstract.

USSR

UDC 621.791.053.011:669.15-194:55 + 669.25 +669.28 + 669.295

KUDINOV, YE. D., Engineer, PRULHOROV, P. A., Candidate of Technical Sciences, ARISTOV, V. S., Candidate of Technical Sciences, and SERBIN, N. G., Engineer

"Effect of Gobalt, Molybdenum, Titanium, and Chromium on Properties of Maraging Weld Metal"

Moscow, Svarochnoye Proizvodstvo, No 12, Dec 70, pp 22-23

Abstract: The authors studied the effect of cobalt, molybdenum, titanium, and chromium on the mechanical properties and structure of the weld metal in the welding of maraging steels ONISKEM5T and ONI4Kh5M3T. The study specimens were prepared from 500 x 500 x 32 mm welded billets. Butt welds with a double-V symmetric groove were welded by manual argon-arc nonconsumable-electrode welding. The mechanical properties of the weld metal were determined after precipitation hardening of the specimens. The results indicate the following optimum contents for the weld metal: 5-7 percent cobalt, 2.5-3.5 percent molybdenum, 0.25-0.35 percent titanium, and 2.3-4.2 percent chromium.

1/1

- 58 -

ESSR

UDC 669.046.5

MFERSHICK, V. Ye., LOWIESSMY, B. M., OFFINENDEN, A. M., and Sandilland Mind.

"Slag Formation and Metal Desulfuration in Covering Slag With Dust-Like Lime"

Moscow, V sb. "Sovremennywe problemy kachestva stall" (MISIS) (Collection of Works. Holern Problems of Steel Quality) (Moscow Institute of Steel and Alloys) Ird-vo "Metallurgiya," No 61, 1970, pp 132-134

Translation of Abstract: The results of an investigation on slag formation and metal desulfuration in a 142-ton martin furnace with lime blowing are presented. 2 figures, 1 table.

1/1

- 52 -

UNCLASSIFIED PROCESSING DATE--230CT70

1/2 013
TITLE--PHOTOMETRIC MICRODETERMINATION OF NONPROTEIN NITROGEN -U-

AUTHOR-(03)-SERBINA, G.N., LITVINENKO, G.V., VISHNEYSKAYA, I.G.

COUNTRY OF INFO--USSR

SOURCE--LAB. DELO 1970, (1), 31-2

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES, CHEMISTRY

TOPIC TAGS--MICROCHEMICAL ANALYSIS, BLOOD SERUM, NITROGEN

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0214

STEP NO--UR/9099/70/000/001/0031/0032

CIRC ACCESSION NO--APO119210

UNCLASSIFIED

STANCE DE LA COMPANIO DE SERVES EN MANGE DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 SIRC ACCESSION NO--APOL19210 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. A MODIFICATION OF THE HYPOBROMITE METHOD FOR THE MICRODETN. OF NONPROTEIN N IS DESCRIBED. BLOOD SERUM (0.02 ML) IS DEPROTEINIZED WITH 1 ML OF THE PPTG. MIXT. CONTG. TUNGSTIC ACID. AFTER CENTRIFUGATION 1 ML OF THE SUPERNATANT IS MIXED WITH 0.5 ML OF THE HYPOBROMITE SOLN. AFTER'S MIN 0.5 ML OF SPERCENT KI AND 0.5 ML OF IN HCL ARE ADDED. AFTER 10 MIN THE ABSORBANCE IS DETO. AT 400 NM AGAINST H SUB2 0. THIS METHOD WAS USED FOR 20,000 ANALYSES DURING 2 YEARS AND ITS RESULTS AGREE FAVORABLY WITH THE OTHER HYPOBROMITE FACILITY: GL. KLIN. VOEN. GOSP. IH. BURDENKO, MOSCOW, METHODS. USSR.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

UDC 612.82

SERBINENKO, M. V., and ALIMYAN, E. S.

"An Estimation of the Integrating Activity of the Brain on the Example of the Orientation Reaction"

Leningrad, Fiziologicheskiy Zhurnal SSSR imeni I. M. Sechenova, Vol 59, No 6, Jun 73, pp 849-854

Abstract: The cross-correlation of the EEG response of various sections of the brain was determined in experiments on rabbits in which an orientation reaction of the defensive type was induced by a sound stimulus. Implanted electrodes were applied. The EEG responses from the temporal area of the cortex of both hemispheres, two symmetrical points of the left and right dorsal hippocampus, the reticular formation of the middle brain, and the septum were recorded by means of a multichannel electroencephalograph. The EEG signals were transformed on a magnetic code recorder. The experimental data were used to calculate by means of a computer the functions of cross-correlation between different brain formations taken in sets of two. The coefficients of cross-correlation increased during the stage in which the orientation reaction was activated and then decreased during the period 1/2

USSR

SERBINENKO, M. V., and ALIMYAN, E. S., Fiziologicheskiy Zhurnal SSSR imeni I. M. Sechenova, Vol 59, No 6, Jun 73, pp 849-854

of inactivation. In both stages vertical connections between brain formations predominated over horizontal connections; the horizontal connections between the right and left temporal regions of the cortex and between the right and left hippocampus were only weakly pronounced. As indicated by the coefficients of cross-correlation, there was a left-right asymmetry (predominance of ipsilateral over contralateral connections) in the interaction of the two temporal regions of the cortex with the reticular formation and of the latter with the left and right hippocampus.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

UDC 621,396.69:621.372.54(088.8)

SERBINENKO, Yu P.

"An Electromechanical Filter"

USSR Author's Certificate No 255425, Filed 6 Jul 68, Published 31 Mar 70 (from RZh-Radiotekhnika, No 10, Oct 70, Abstract No 10V384 P)

Translation: This Author's Certificate introduces an electromechanical filter which contains electromagnetic input and output converters, and a viorator consisting of two N-shaped half-elements interconnected by a bridge. As a distinguishing feature of the patent, filter construction is simplified by fastening the vibrator to the geometric center of the bridge which connects the vibrator halves, and locating the transducers (converters) in the middle section of the halves.

1/1

- 99 -

USSR

UDC: 621.372.54(088.8)

SERBINENKO, Yu. P.

"An Electromechanical Band Filter"

USSR Author's Certificate No 280705, filed 21 Nov 68, published 10 Dec 70 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6V438 P)

Translation: An electromechanical band filter is proposed which contains an oscillatory system made in the form of N-shaped vibrators interconnected by an internal flexible bridge. The device also contains input and output piezoelectric converters. In order to narrow the passband of the filter, the converters are mounted on the inside of the outer bridges of the N-shaped vibrators.

1/1

SON SECURIORE CONTROL CONTROL

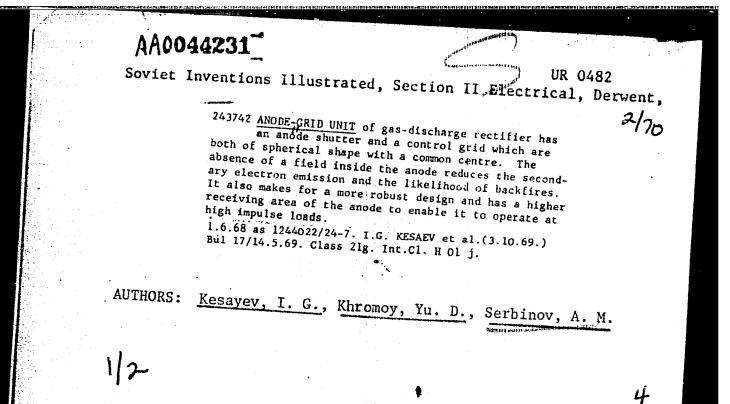
Edigrippigittafacettafacetmenteristauramien

USSR

UDC 621.385.017.72:536.58(C88.8)

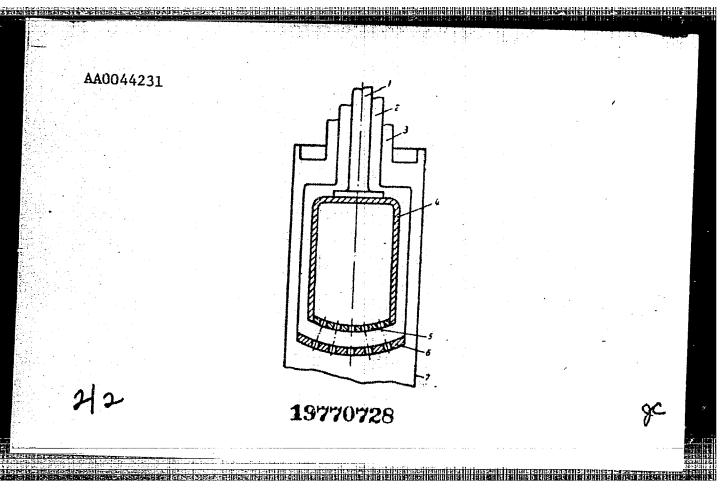
BAKEYEV, P.B., BOYKO, B.I., ITUNIN, L.L., SERBINOV, A.M., KRCMCY, YU. D.

"Unit For Control Of The Temperature Of Blectrovacuum Devices"


USSR Author's Certificate No 262527, filed 2 Dec 68, published 13 May 70 (from RZh--Elektronika i yeye primeneniye, No 12, December 1970, Abstract No 12A113P)

Translation: A unit is proposed for control of the temperature of electrovacuum devices, which contains a curved thermosensitive plate acting on the regulating organ for the flow rate of a coolant flowing in a spiral which encircles the body of the device. At the extremes of the coils of the spiral, two intermediate plates are attached at the outer extremity of which the thermosensitive plate is secured and at the inner. fixed screws for adjustment of the moment of turning on of the regulating organ. Such construction of the device assures production of a signal proportional to the average temperature of the body. 8.8.

1/1


APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

The state of the s

19770727

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9

USSR

UDC 620,195

TOISTAYA, M. A., FLEGONTOVA, L. N., and SERBINOVSKAYA, YE. L., MOSCOW Aviation Technological Institute

"Electrochemical and Corrosion Behavior of SAP Metalloxide Composition in Electrolyte Solutions"

Moscow, Zashchita Metallov, Vol 7, No 5, 1971, pp 540-546

Abstract: A study was made of the electrochemical and corrosion behavior of unclad SAP-1 in electrolyte solutions by comparing its behavior with that of pure AVOO Aluminum and ADl technical grade aluminum in similar solutions. The test were made in artificial sea water, Moscow tapwater, distilled water, and in one- and two-component solutions of KKO_3 , Ka_2SO_L , and NaCl. In synthetic sea water at pH 7.9-8.0, the corrosion losses of SAF-1 are sharply reduced compared with the losses of AVOO and AD1 not only at ordinary temperature, but also at the boiling point. However, in sea water with artificially increased alkalinity (pH 9.8-10) the corrosion resistance of SAP-1 is harply reduced. In neutral solutions, with a concurrent content of passivating and activating anions, the stability of the passive state of the SAP-1 material during anodic polarization is higher than in pure (AVOO) and technical grade (AD1) aluminum. (The comparison grades of aluminum were chosen because these 1/2

CIA-RDP86-00513R002202820015-9"

APPROVED FOR RELEASE: 09/01/2001

USSP

TOISTAYA, M. A., et al., Zashchita Metallov, Vol 7, No 5, 1971, pp 540-546

materials are close to SAP-1 in chemical content, but differ sharply in structure.) It was suggested that the electrochemical and corresion behavior of SAP-1 differs from the comparison metals because of its special distribution in the aluminum matrix of iron and silicon impurities, and also because of its content of χ - ${\rm Al}_2{}^0{}_3$ particles.

2/2

Acc. Nr:

APO054284

Ref. Code: UR0463

> PRIMARY SOURCE: Molekulyarnaya Biologiya, 1970, Vol 4, Nr 2, pp 205-212

FRACTIONATION OF VALINE ISOACCEPTOR IRNAS FROM BAKER'S YEAST '

S. K. VASILENKO, F. F. DIMITROVA, L. V. OBUKHOVA, V. F. PODGCE

Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences, USSR, Novosibirsk

A new method for the chromatography of isoacceptor tRNAs Val from baker's yeast is described. The chromatography is carried out on TEAE-cellulose columns at 33-40° in solution of 7 M urea and 0.1 M CH₃COOH, in NaCl linear gradient from 0,35 to 0,5 M. Mg+2 lons and EDTA in concentrations 0,003-0,01 M have a marked influence on the fractionation. tRNA Val was fractionated into a few isoacceptor fractions. Structural difference of these fractions was confirmed by the analysis of guanylo-ribonuclease digests of IIC-valyl-tRNA on TEAE-cellulose columns in linear gradient of HCOOH and NaCi in 7 M urea. The final purification of tRNA Val was performed by the chemical method of periodate oxidation.

REEL/FRAME 19831422

DIA

UNCLASSIFIED PROCESSING DATE: CADECTO TITLE--REACTION OF GAS HOLECULES WITH SOLID ADSORBENT SURFACES -U-

AUTHOR-(03)-SERBRYAKOV, G.A., POLYAKOV, I.T., KOSTROV, V.V.

COUNTRY OF INFO--USSR

SOURCE--IZV. VYSSH. UCHEB. ZAVED., KHIM. KHIM. TEKHNOL, 1970, 13(3), 435-7

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ADSORPTION, SURFACE PROPERTY, ACTIVATION ENERGY, HYDROGEN BONDING, COPPER, NICKEL, ALUMINUM, ZINC, THERMAL EFFECT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3008/0621

STEP NO--UR/0153/70/013/003/0435/0437

CIRC ACCESSION NO--AT0137706

UNCLASSIFIED

CIRC ACCESSION NO--ATO137706

ABSTRACT: THE CALCN. OF THE ACTIVATION PRESENTED. DATA ARE GIVEN FOR THE ENERGY FOR THE DISSOON. OF A GAS ON THE SURFACE OF AN ADSORBENT IS THE ENERGY OF THE GAS MOLS. ON THE SURFACES OF CU, NI, AL, AND ZN. THE ESTD. ACTIVATION TEMPS. FOR HON THESE METAL SURFACES ARE GIVEN.

FACILITY: IVANOV. KHIM.-TEKHNOL. INST., IVANOVO, USSR.

SERBULENKO	ting of aith to surface in study of aith to surface in certized by the degree of a status during rapid conting a perfect inconting a perfect incon		3 1/4 5 573 08
	retals. The gritcal (convector) silp unfaxial crystals were charthay are retals were charthay are retals with atrong internal erres as so out to be optically biaximi us outly be used for a fast quality afterized in the unstreased are afterized in the unstreased are characteristic can also be a history of the minerals themsel history of the minerals themsel history of the minerals themsel.	GREE OF ST	*

USSR

UDC: 53.07/.08+53.001.5

SERBULOV, Yu. A., KOLOBASHKIN, V. M.

"A Method of Radiometric Analysis of Noble Gases Under Conditions of a 222Rn Background"

V sb. <u>Vopr.</u> dozimetrii i zashchity ot izluch. (Problems of Dosimetry and Radiation Shielding--collection of works), vyp. 12, Moscow, Atomizdat, 1971, pp 72-76 (from <u>RZh-Fizika</u>, No 4, Apr 72, Abstract No 4A681)

Translation: The authors discuss the difficulties of measuring the radio-activity of noble gases in the presence of \$222\text{Rn}\$ background activity. A method is proposed for reducing the activity of background emitters by constant segregation of the products of decay of \$222\text{Rn}\$ settling on the walls of the measurement space and extraction of the decay products beyond the shielding. It is shown that one way to do this is to use a chamber with moving walls. The optimum parameters of such a chamber are calculated. It is concluded that the activity of background radiations from emitters in a fairly large sensing space may be reduced by more than two orders. M. L.

1/1

USSR

UDC: 621.3.049.75

SERCHUGOVA, A. G., OSHARIN, V. I., FILIP'YEVA, N. I., ORLOVA, L. N.

"A Method of Making Printed-Circuit Boards"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 5, Feb 71, Author's Certificate No 293312, Division H, filed 31 Mar 69, published 15 Jan 71, p 182

Translation: This Author's Certificate introduces a method of making printed-circuit boards with metallized holes by a positive combined method. As a distinguishing feature of the patent, the quality and reliability of the boards is improved and cost is reduced by electrophoresis polymer coating of the printed-circuit drawing formed by chemical and galvanic copper plating. This polymer coating is stripped off after removal of the photoresist and etching of the copper foil.

1/1

106 -

USSR

UDC 621.396.6.004.5

SERDAKCY. A.S.

"Automatic Checkout Testing and Technical Diagnosis"

Avtomaticheskiy kontrol' i tekhnicheskaya diagnostika (cf. English above), Kiev, "Tekhnika," 1971, 242 pp, 1 r. 1 k. (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 1, Jan 72, Abstract No 1A4681 by B. U.)

Translation: The book considers questions in the automatic checkout testing and technical diagnosis of electronic equipment. A classification of automatic test systems is introduced and their construction principles are set forth. A description is given of the quality evaluation of the basic characteristics of the processes of checkout testing and trouble location, and the choice of object parameters and test system operating conditions is substantiated. Considerable attention is devoted to questions of the synthesis of optimal technical diagnosis programs according to the criterion of minimum average troubleshooting time and minimax criteria. Methods for the synthesis of such programs are considered, as well as algorithms for calculating them on a digital computer. 54 illustrations. 33 tables. Bibliography with 70 titles.

1/1

Instruments and Measurements

USSR

UDG 621.396.6.004.5

SERDAKOV, ALEKSANDR SEMENOVICH, Candidate Of Technical Sciences

"Automatic Checking And Technical Diagnosis"

Avtomaticheskiy kontrol' i tekhnicheskaya diagnostika (cf English above), kiev, Izd. "Tekhnika," 1971. 244 pp. 54 ill. 53 tab. 70 ref. 1 r l k.

Abstract: The problems are considered of automatic checking of fitness for operation and the technical diagnosis of the condition of electronics equipment. A classification of automatic checking systems is introduced and the principles of their construction are stated. A quantitative evaluation is described of the principal characteristics of fitness checking and the localization of faults, and grounds are given for the choice of parameters of the object and the operating conditions of the checking system. Considerable attention is given to problems of the synthesis of optimim programs of technical diagnosis with respect to the criterion of the minimum average time of localization of faults and the minimax criteria. Methods of synthesis of such programs and algorithms of their calculation on an electronic computer are considered. The book is intended for engineers occupied with proclams of the development, introduction, and operation of cutomatic chacking systems for electronic equipment, and it can also be useful to students of senior courses specializing in the area of automatic checking of electronics equipment. 1/5

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

aking mengangan pengangan pengangan pengangan pengangan pengangan pengangan pengangan pengangan pengangan pengan Pengangan pengangan

USSR			
SERDAKOV,	ALEKSANDR SEMENOVICH, Avtomaticheskiy kontrol' i tekhnicheska	ıya	
<u>liagnostík</u>	a, Kiev, Izd. "Tekhnika," 1971. 244 pp. 54 ill. 33 tab. 70 re	f.	
r1k.			
. *	TABLE OF CONTENTS		
			į
ntroductio	n	3	
	and the second s		
hapter 1.	Overall information concerning automatic systems for checking (ASC) of electronic equipment	9	
	1. Electronic devices and systems as objects of checking	9	
	2. Principal elements of systems of automatic checking		
	and overall principles of its accomplishment	16	
	5. Classification of automatic checking systems	21	
	4. Principles of construction of ASC accomplishing fitness		
	checking and successive search for failures	39	
	5. Principles of construction of ASC with use of computer	45	
apter 2.	Characteristics of automatic system for chacking	46	
	1. Totality of characteristics of ASC	46	
	2. Completeness of fitness checking	52	
	ST COMPTRICTIONS OF LITTIGUE CHRONING	/-	

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR		
CEDDAMON	AT THE AND DESCRIPTION OF	
SEKDAKOV,	ALEKSANDR SEMENOVICH, Avtomaticheskiy kontrol' i tekhniche	skaya
1 r 1 k.	ka, Kiev, Izd. "Tekhnika," 1971. 244 pp. 54 ill. 33 tab. 70	ref.
	4. Precision of measurement of output and intermediate	
	parameters	73
	5. Precision of localization of faults	76
	6. Speed of response of ASC in the process of fitness	
	checking and localization of faults	79
	7. Effectiveness of checking	86
Chapter 3.	Choice of parameters of object of checking	99
	1. Methods of representation of objects of checking	99
	2. Choice of parameters of object in order to assure	
関。 ・	complete checking of fitness	105
	3. Checking of fitness with a specified completeness	110
	4. Ohecking of fitness with a specified reliability	118
	5. Choice of totality of parameters necessary for	177
	localization of faults of object	153
Chapter 4.	Choice of operating conditions of sutomatic systems for	
	checking	144
	1. Principal operating conditions of ASC	144
3/5	-	

SSR		
ERDAKOV, A	LEKSANDR SEMENOVICH, Avtomaticheskiy kontrol' i tekhnicheskay	<u>a</u>
iagnostika . r 1 k.	, Kiev, Izd. "Tekhnika," 1971. 244 pp. 54 ill. 33 tab. 70 ref	•
	2. Continuous checking of fitness of an attanted object 3. Continuous checking of fitness of doubled nonattended	149
	system	163
	4. Periodic checking of fitness of attended object 5. Chaica of operating conditions of ASS intended for units	168
	permitting both continuous and pariodic checking of	172
	6. Choice of operating conditions during localization of faults of object	175
	Synthesis of program of operation of ASC in the process	
Chapter 5.	of localization of faults of object	180
	1. Criteria for synthesis of program of technical diagnosis 2. Lecalization of faults as a process of change of the	180
	information states of object	183
	 Synthesis of quasioptimum programs of localization of faults in a specified object 	194
4/5	• •	

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR		iniing in	
SERDAKOV, diagnostik 1 r 1 k.	ALEKSANDR SEMENOVICH, Avtomaticheskiy kontrol' i tekhnicheska a, Kiev, Izd. "Tekhnika," 1971. 244 pp. 54 ill. 33 tab. 70 re	<u>ya</u> F.	
	4. Synthesis of optimum programs of localization of faults of object 5. Synthesis of optimum programs of technical diagnosis with respect to minimax criteria 6. Algorithms of calculation of programs of localization	202 213	
en e	of faults on an electronic computer 7. Examples of calculation of optimum programs of localization of faults on an electronic computer	222 2 3 0	
Bibliograph	y	237	٤.
5/5			

Equipment / Machinery

USSR

UDC: 621.313.322-81:66.045.5

ROZENFEL'D, L. M., SERDAKOV, G. S., CHEKHOVICH, V. Yu., and FILIPPOV, I. F.

"Experimental Rack for Investigating Low-Temperature Vaporization Cooling for Turbogenerator Piping"

Novosibirsk, <u>Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR--</u>Seriya Tekhnicheskikh Nauk, No 3, 1972, pp 50-57

Abstract: This article represents part of the continuing search for new systems of cooling turbogenerators. A description is here given of an important stage in cryogenic cooling of the electrical windings in the generator by direct Freon vaporization in the form of an experimental rack for investigating this type of cooling. It consists of a measuring section, a double system of cooling, a power supply block, blocks for readoff, recording, and writeout devices, automation and protection systems, and a control panel. A drawing for the overall system is given together with a photograph of the rack and the measuring block. A diagram for the structure of the heating system and the temperature sensors plus a schematic of the power supply block are also presented. The experiments performed with the aid of the device are described; they can determine the temperature distribution of

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

UDC: 621.313.322-81: 66.045.5

ROZENFEL'D, L. M., et al, <u>Izvestiya Sibirskogo Otdeleniya Aka-demii Nauk SSSR--Seriya Tekhnicheskikh Nauk</u>, No 3, 1972, pp 50-57

on the conductor wall surfaces and the current of the working fluid inside the channel, the hydraulic resistance distribution over the length, and other factors. The authors are associated with the Institute of Thermal Physics, Novosibirsk.

2/2

226

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

USSR

UDC: 621.313.322--81:66.045.5

SERDAKOV, G. S.

"Effect of the Hydrodynamics of the Operating Fluid Flow on the Energy Indices of Electric Turbogenerator Low-Temperature Cooling

Novosibirsk, Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR--Seriya Tekhnicheskikh Hauk, No 3, 1972, pp 58-66

Abstract: This paper considers the effect of hydraulic resistances to the flow of the operating fluid on the energy indices of the low-temperature cooling system in turbogenerators. Using the basic diagram of such a system and its thermodynamic cycles, the author analyzes liquid or single-phase cooling of the electric windings in the generator, and then proceeds to a discussion of the vaporization or two-phase cooling method. Formulas are developed for the refrigerating capacity of the system and for qualitatively estimating the effect of the fluid hydrodynamics on the energy losses in vaporization cooling; curves giving the results of computations with these formulas are shown. It is found that the hydrodynamics of the cooling fluid causes additional irreversible losses in the cooling equipment cycle and increases the total energy losses of the generator. The author is associated with the Institute of Thermal Physics, Novosibirak. 1/1

CIA-RDP86-00513R002202820015-9"

APPROVED FOR RELEASE: 09/01/2001

characteristics for operation, where a change in voltage across the gate causes a considerable change in output impedance. However, the circuit may require thermotatic control since a slight instability of transistor characteristics may lead to instability of the resonance frequency.

USSR

UDC: 621.372.8.092.22

SERDAKOV, V. 3.

"Analyzing the Losses in a Ctenoid Band Delay System"

V sb. Radioelektron. v nar. kh-ve SSSR, Ch. 2 (Radioelectronics in the National Economy of the USSK, Part 2-collection of works, kuybyshev, 1970, pp 223-226 (from Rkh-Radiotekhnika, No. 3, March 71, Abstract No. 35134)

Translation: Expressions are derived for loss components (in the metal and the dielectric) in a ribbon delay system. Results of the computations are confirmed by measurements. Two illustrations, bibliography of one.

1/1

- 31 -

CHARLES EN CONTRACTOR DE LA CARTE DE L LA CARTE DE L LA CARTE DE L

USSR

UDC: 621.372.8.092.22

ren enter de avente en deductio du pres part parte enter de rengente, estrata e este en en en entere de de la El la festa de la constitució de la constituci

SERDAKOV, V. S.

"Determining the Parameters and Structural Dimensions of a Band Delay System of the Ctenoid Type"

V sb. Radio lektron. v nar. kh-ve SSSR. Ch. 2 (Radio electronics in the National Leonomy of the USSR, Part 2-collection of works)
Kuybyshev, 1970, pp 216-222 (from RZh-Radio tekhnika, No. 3, March 71, Abstract No. 35131)

Translation: Expressions are derived for determining the principal electronic parameters and dimensions of the examined delay system. Two illustrations, bibliography of two.

1/1

- 35 -

1/2 022 TITLE-TENSODIDDE EFFECT DURING THE BENDING OF ELONGATED SEMICONDUCTOR PROCESSING DATE--090CT70

AUTHOR-(04)-GRIBNIKOV, Z.S., ZHADKO, I.P., RUMANOV, V.O., SERDEGA, B.K.

COUNTRY OF INFO-USSR

SOURCE--UKRAIN*KII FIZICHNII ZHURNAL, VOL. 15, FEB. 1970, P 300-317

DATE PUBLISHED ------70

SUBJECT AREAS-ELECTRONICS AND ELECTRICAL ENGR.

TOPIC TAGS--SEMICONDUCTOR DIDDE, ELECTRIC CURRENT, ELECTRIC PROPERTY,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME--1991/0335

STEP NU--UR/0185/70/015/000/0300/0317

CIRC ACCESSION NO--APOLLO223

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9 от семення не при при на п На при на при

UNCLASSIFIED CIRC ACCESSION NO--APO110223 PRUCESSING DATE--0900T70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THEORETICAL AND EXPERIMENTAL STUDY OF THE EFFECT OF BENDING ON THE CURRENT VOLTAGE CHARACTERISTIC OF ELONGATED FLAT SEMICONDUCTOR DIDDES. PROCEDURES ARE GIVEN FOR CALCULATING THE CURRENT VULTAGE CHARACTERISTICS OF DIODES OF THIS CLASS. SUBJECTED TO BENDING. THE CURRENT VOLTAGE CHARACTERISTICS OF GERMANIUM DIDDES OF THIS CLASS ARE MEASURED. THE DEPENDENCE OF THESE CHARACTERISTICS ON THE TYPE AND DEGREE OF BENDING AND THE LENGTH OF THE DIGGE BASE IS STUDIED. THE EXPERIMENTAL RESULTS ARE FOUND TO BE IN GOOD AGREEMENT WITH THEORETICAL EXPECTATIONS. IT IS BELIEVED THAT THESE DIBDES CAN BE EFFECTIVELY USED IN AUTOMATIC CONTROL SYSTEM. AKADEMIIA NAUK UKRAINS KOI RSR, INSTITUT NAPIVPROVIDNIKIV, KIEY, UKRAINIAN SSR.

UNCLASSIFIED

2/2

022

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

UNCLASSIFIED PROCESSING DATE--230C170

AUTHOR-(02)-ZAREMBO, L.K., SERDOBOLSKAVA, O.YU.

COUNTRY OF INFO--USSR

SOURCE--VESTNIK MOSKOVSKOGO UNIV. FIZ. ASTRON. USSR, VOL. 11, NO. 1, P.

SUBJECT AREAS--PHYSICS

TOPIC TAGS--APPROXIMATION CALCULATION, STANDING WAVE, SOLID STATE,

NONLINEAR EFFECT, AMPLITUDE MODULATION, FORCED VIBRATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/1327

STEP NO--UR/0188/70/011/001/0062/0067

CIRC ACCESSION NO--APO109411

UNCLASSIFIED

2/2 033 CIRC ACCESSION NOAPOIO ABSTRACT/EXTRACT(U) GP USED FOR THE CALCULATION	UNCLASSIFIE 9411 -0- ABSTRACT.	D p	ROCESSING DATE	230 CT70
USED FOR THE CALCULATINAVES (WITHOUT DISSIPADETECTION OF AMPLITUDE CAUSED BY THE NONLINEAR DAMPING ON FREQUENCY IS	ON OF EXCITATION TION) IN A SOLID MUDULATED LONG!	OF FINITE A LAYER. THE TUDINAL AND	AMPLITUDE STANDII	ION IS
	WHET SEU.			
	•			ļ
		•		
影				
		• • •		
	UNCLASSIFIED			
Charles and the second				

USSR

SERDOBOL'SKIY, V. I.

"Mathematical Model of a Self-Teaching Neuron"

Upr. i Inform. Protsessy v Zhivoy Pripode [Control and Information Processes in Living Nature -- Collection of Works], Moscow, Nauka Press, 1971, pp 155-157, (Translated from Referativnyy Zhurnal, Kibernetika, No 3, 1972, Abstract No 3 V586 by N. Fastova).

Translation: It is suggested that a model of a neuron be studied as a self-teaching classifier dividing input situations into two classes. Equations are presented for one version of the model, describing the process of self-teaching.

1/1

USSR

1/2 TITLE--ELIMINATION OF THE INFLUENCE OF THE COMPOSITION AND DISPERSITY OF PROCESSING DATE--040EC70 SAMPLES DURING THE SPECTRAL ANALYSIS OF SULFIDE ORES AND MINERALS BY AUTHOR-(02)-RUSANOV, A.K., SERGORDYA, L.I.

COUNTRY OF INFO--USSR

SOURCE--ZH. PRIKL. SPEKTROSK. 1970, 12(4), 596-601

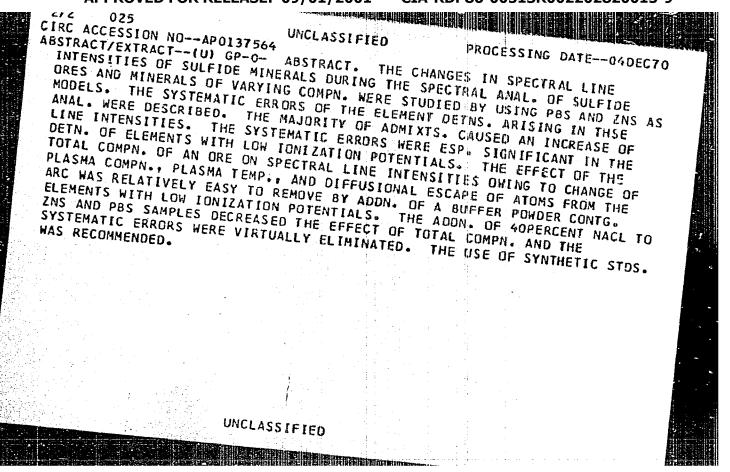
DATE PUBLISHED-----70

SUBJECT AREAS--PHYSICS, EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--SPECTRUM ANALYSIS, SULFIDE, LEAD SULFIDE, ZINC SULFIDE, SOCIUM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/0473


STEP NO--UR/0368/70/012/004/0596/0601

CIRC ACCESSION NO--APO137564

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

UDC 612.822.3+612.821.6

MERZHANOVA, G. Kh. and SERDYUCHENKO, V. M., Laboratory of Conditioned Reflexes, Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences USSR, Moscow

"Potentials Evoked by Stimulation of the Red Nucleus in the Case of Direct and Feedback Conditioned Associations"

Moscow, Zhurnal Vysshey Nervnoy Deyatel'nosti, Vol 23, No 3, May/Jun 73, pp 632-635

Abstract: Experiments were conducted with cats to find how a feedback conditioned association is expressed electrographically. An electrode was implanted in the cats' red nucleus, and a conditioned food-getting response was developed in association with a feeder. It was found that potentials registered during a strong conditioned reflex had no extra components. However, tests for the feedback association, accomplished by electrical stimulation of the red nucleus in the absence of the feeder, evoked potentials which registered late, negative, low-amplitude components. Their latent phase fluctuated from 30-60 milliseconds in different cats. The presence of these components indicates the conditioned nature of the feedback association.

1/1

- 56 -

USSR

UDC: 8.74

PUTYATIN, Ye. P., SERDYUCHENKO, V. Ya.

"Problems in the Theory of Edge Contrast in Human Vision"

Probl. bioniki. Resp. mezhved. temat. nauch.-tekhn. sb. (Problems of Bionics. Republic Interdepartmental Thematic Scientific and Technical Collection), 1971, vyp. 6, pp 32-39 (from RZh-Kibernetika, No 1, Jan 72, Abstract No 1V1110)

Translation: The paper deals with an axiomatic method of constructing a mathematical model of the edge contrast in human vision. Authors'

1/1

- 66 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

UDC 612.014.425.426

SERDYUK, A. M. and YERSHOVA, N. K., Kiev Institute of General and Communal Hygiene

"Effect of a Low-Intensity Ultrahigh-Frequency Electromagnetic Field on Brain Bioelectrical Activity in the Rabbit"

Kiev, Fiziologichniy Zhurnal, No 6, 1972, pp 802-807

Abstract: The response of rabbits exposed to a low-intensity ultrahighfrequency electromagnetic field (0.05 to 6 v/m) for 60 days was two-phase. The first 2 to 4 weeks were characterized by the stimulation of cortical activity manifested by an intensification of the frequency of the alpha waves on the EEG. The second stage lasting about 2 weeks was one of inhibition, reflecting the appearance of delta waves. The magnitude of the reaction varied directly with the intensity of irradiation. There were wide differences in the responses of the individual animals. In general, however, the experiments showed that the cerebral cortex of rabbits is highly sensitive to a low-intensity ultrahigh-frequency electromagnetic field.

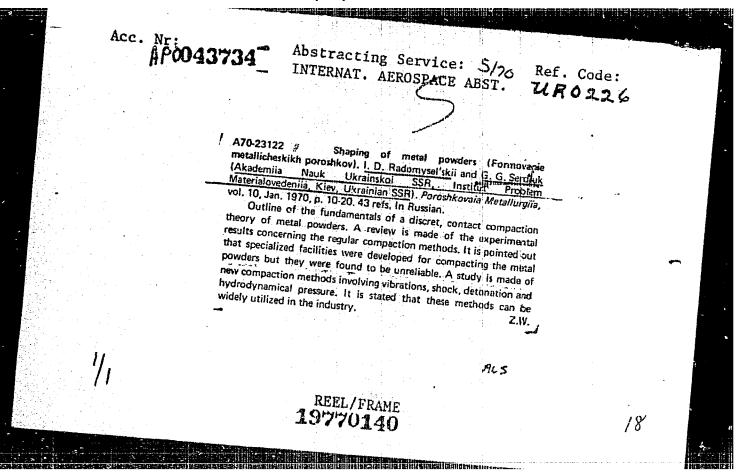
1/1

- 83 -

USSR

UDC: 621.762.045

MAKSIMENKO, L. A., SHTERN, M. B., RADOMYSEL'SKIY, I. D., SERDYIK G. G., Kiev State University Imeni T. G. Shevchenko, Institute of Problems of Material


"The Existence of Strong Shock Waves During High-Speed Pressing of Metal

Kiev, Poroshkovaya Metallurgiya, No 4, 1972, pp 17-20.

Abstract: It is proven that strong shock waves, i.e., discontinuities of all parameters of the compacted medium (density, pressure, velocity, entropy) can arise with high-speed (impact) loading of metal powders. The authors observed compression jumps upon impact pressing of type P2h2M iron powder with initial pressing speeds of over 100 m/sec. This provides experimental confirmation of the existence of strong shock waves in metal powders when the pressing speed exceeds the speed of sound in the powder.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9"

UDC 8.74

SERDYUK, G. I., SMIRNOV, YE. N.

"DZhOSS SystemsProgram in AIST-0"

V sb. <u>Teoriya yazykov i metody postroyeniya sistem programmir</u>. (Language Theory and Methods of Constructing Programming Systems—collection of works), Kiev-Alushta, 1972, pp 217-227 (from RZh-Kibernetika, No 12, Dec 72, Abstract No 12V487)

Translation: The structure and operating principles of the DZhOSS systems program in the system for collective execution of AIST-0 is described. The input language of the DZhOSS systems program is compiled on the basis of the JOSS language developed by the Rand Corporation and it is a Russian version of this The DZhOSS instructions can be direct and indirect. The directly given instruction is executed immediately after it is given by the subscriber; after this instructions given directly are not executed immediately. They are arranged by subscriber program the execution of which the subscriber can initiate by special volume program he can use the capabilities of the language which permit languages

- 90 -

USSR

SERDYUK, G. I., et al., <u>Teoriya yazykov i metody postroyeniya sistem programmir.</u>, Kiev-Alushta, 1972, pp 217-227

to be written from individual modules accumulated in the personal archives of the subscriber. The subscriber can then organize the calling sequence and the execution of these modules. The number of direct instructions which can be given by the subscriber during a communications session with the DZhOSS is unlimited. The reaction time of the DZhOSS to a single direct command is 3-7 seconds (depending on the type of instruction and on the number of subscribers operating at a given point in time with the system). The systems program is written in the EPSILON language and its length is about 12,000 M-220 instructions. The entire systems program is divided functionally into two parts: the master program and the execution program. The master program is run by the dispatcher on appearance of the corresponding requests from the terminals. If the given subscriber is the first subscriber connected to the DZhOSS, the master program dispatches a request to the dispatcher for resources, that is, for a number of units of the high speed external memory (magnetic drums, discs) for allocation of the execution program, and it copies the program from the standard tape reserves into the ordered reserves. Then the individual process is created for the given subscriber; the individual process memory is loaded with the initiating program, the subscriber boxes are transmitted to the individual process, and the latter is started. If the subscriber is not the first one, the execution

SERDYUK, G. I., et al., <u>Teoriya yazykov i metody postroyeniya sistem programmir.</u>, Kiev-Alushta, 1972, pp 217-227

program is already in the high speed external memory. In this case, the work is done with respect to creating the individual process, loading it and starting the decomposition program is divided into three parts: the master section, reads the subscriber's instructions from the box and performs the initial editomposition program recognizes the deleted symbols and the register symbols). The decomposition program recognizes the instruction and forms the corresponding unit the internal language. The interpreting program organizes the execution of language. An example of utilizing the DZhOSS systems program in AIST-0 is the terminals. The subscriber input to the system, its relation to the DZhOSS systems program and an example of the dialog in the DZhOSS language are demonstrated. The bibliography has 8 entries.

3/3

- 91 -

UDC 8.74

LEONOV, P. K., SERDYUK, G. I.

"Internal Structure of Operating Programs of the BASIC-6 System"

V sb. Teoriya yazykov i metody postroyeniya sistem programmir. (Language Theory and Methods of Constructing Programming Systems--collection of works), Kiev-Alushta, 1972, pp 244-256 (from RZh-Kibernetika, No 12, Dec 72, Abstract No

Translation: The internal structure of the operating programs in the BASIC-6 system is described. The compilation of the program from the BASIC-6 language will be carried out by a step-by-step transmitter, that is, the operating program is created during the construction process. On destroying any operator, a "gap" is formed in it requiring extension of the section of the operating program located below the "gap" in memory. In order to simplify the work with respect to memory allocation for all elements pertaining to the program, a quantized structure is proposed in the BASIC-6 system which is a special form of list organization of information. A study was made of two quantization procedures: constant quanta and variable-length quanta. It is noted that it is possible to execute such languages as IOSS and APL on the basis of the 1/1

74 -

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002202820015-9 1.N, of personalities identified with the Protwin Research Institute to the present issued from the former institute. No previous facility association could be Institute. This article probably represents some joint work between the two Cobescription: located for V. D. Vasil'yev, but it is likely that he represents the latter Institute at Pushchino (33). Pravious articles by V. I. Parmogorov have been Genetice and Selection of Microorganisms, Moscow, and the Protein Research article, also on escharichia coli, was issued jointly from the Institute of associate one new person, N. 1. Smirnov, with the institute (32). The other of the articles, which dealt with <u>escherichia coli</u> tibusomes, it was possible to located from the Protein Research Institute at Pushchino. On the basis of one Kame: Protein Research Instituce, Pushchino (U) As a ready dource of reference, given below is a complete listing Hicin, Yu. V. 46,475 Lavrilova, L. P. Glinskaya, O. V. Finkel'shteyn, A. V. Fedorov, B. A. Chirpadze, Yu. M. Borshteyn, T. M. Beletsina, N. V. (U) During this quarterly reporting period, two new articles were וואוטו עפטובובט ロマクトキャグラードロ All-bacomistay SECTION IV Vasill'yev, V. D. Tikcopulo, Ya. I. Spirin, A. S. Serdyuk, I. N. I 'N 'Aouates REivalor P 1 Rashovskaya, Ye. P. Petesyn, O. B. Sci Selecteo Afrosmice Intercol 63-85E Jane 1991

SERDYIK. L. S., and YURCHAK, L. D., Institute of Organic Chemistry, Academy Of Sciences Ukrzinian SSR, and Central Republic Botanical Garden, Ukrainian

"Allelopathic Effect of Melanins of Stachybotrys alternans"

Koscow, Prikladnaya Biokhimiya i Mikrobiologiya, Vol 7, No 2, Mar/Apr 71, PP 174-177

Abstract: Two melanin fractions (SA-1 and SA-2) were isolated from the blomass of the fungus Stachybotrys alternans grown on barley straw. SA-1 was extracted with 2 % or 0.5 % KOH from the fungi defatted by treatment with methylene chloride and then ground. It was precipitated from alkaline solumethylene chioride and then ground. It was precipitated from the fungus tions by addification to pH 4-5 with HC1. SA-2 was isolated from the fungus that the fungus are the fungus of th biomass, hydrolyzed by boiling for 12 hrs with 6 % HC1. The composition of SA-1 was C 75.23, H 10.85, N 2.10, O 11.82% NeO groups were absent. A solution of Sa-1 in 0.5 N KOH had a linear absorption spectrum at 400-600 nm (tgd = 0.0035). The EPR spectrum of SA-1 indicated the presence of a stable free radical (half-width of line 8 oe). SA-2 had a similar linear spectrum at 400-600 nm (tg d = 0.0029) and also formed a free radical in a

- 28 -

SERDYUK, L. S., and YURCHAK, L. D., Prikladnaya Biokhimiya i Mikrobiologiya, Vol 7, No 2, Mar/Apr 71, pp 174-177

dilute KOH solution (half-width of the line 5 oe). SA-1 and SA-2 applied in concentrations of 0.1-2% to seedlings of wheat, rye, and cress plants inhibited the growth of roots to an extent which increased with increasing concentration of melanin fractions. The growth of roots was suppressed the effect on wheat was somewhat less pronounced. SA-2 was more effective the effect of melanin fractions than SA-1. Cress was more sensitive to tests conducted on seedlings, solutions of SA-1 and SA-2 in 0.05 N KOH were

2/2